| chase Fguess $^{\text {cBSEGuess.com }}$ |
| :--- | :--- |

Model Paper-2 (2016-17) SUMMATIVE ASSESSMENT - 1 CLASS x

MATHEMATICS

Blue Print

S.No	Topic	VSA $(1$ mark)	Short answer I $(2 m a r k s)$	Short answer II $(3 m a r k s)$	Long Answer $(4 m a r k s)$	TOTAL (90)
1	Number system	$2(1)=2$	$1(2)$	$1(3)$	$1(4)$	$5(11)$
2	Algebra		$1(2)$	$3(3)=9$	$3(4)=12$	$7(23)$
3	Geometry	$1(1)$	$1(2)=2$	$2(3)=6$	$2(4)=8$	$6(17)$
4	Trigonometry		$2(2)=4$	$2(3)=6$	$3(4)=12$	$7(22)$
5	Statistics	$1(1)$	$1(2)=2$	$2(3)=6$	$2(4)=8$	$6(17)$
	Total	4	$6(12)$	$10(30)$	$11(44)$	$31(90)$

close Fguess $^{\text {g. }}$	CBSEGuess.com

Model Paper - 2 (2015-16)

SUMMATIVE ASSESSMENT - 1

CLASS X

MATHEMATICS
Time: 3hrs
Max. Marks: 90
General Instruction:-

1. All questions are Compulsory.
2. The question paper consists of 31 questions divided into 4 sections, A,B,C and D. Section - A comprises of 4 questions of 1 mark each. Section-B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section- D comprises of 11 questions of 4 marks each.
3. Question numbers 1 to 4 in Section are Very Short Answer type Questions to be answered in one word or in one sentence or exact requirement of the question
4. Use of calculator is not permitted.

SECTION A

Questions 1 to 4 carry one mark each.

1. If $\operatorname{HCF}(120,225)=15$, then find the LCM of 120 and 225.
2. Write the condition which should be satisfied by q so that rational number p / q has a terminating decimal expansion.
3.In $\triangle A B C, A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C=26 \mathrm{~cm}$.Is thisa righttriangle? Give reasonfor youranswer.
4.Write the relation connecting the measures of central tendencies.

SECTION B

Question 5to 10 carry two marks each.

5. Find H.C.F of 867, 255 using Euclid's division lemma.
6. Find the zeroes of the polynomial $4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{ } 3$.
7.In figure $\mathrm{PQ} \| \mathrm{BC}$ find QC

cbse Suess	B	CBSEGuess.com	C

8. If $\operatorname{Sec} 4 A=\operatorname{Cosec}\left(A-20^{\circ}\right)$ where $4 A$ is an acute angle, find the value of A.
9. Simplify $\sin \theta\left\{\frac{1}{\sin \theta}-\frac{1}{\operatorname{cosec} \theta}\right\}$
10. Find the Mean of first five odd multiples of 5?

Section C
 Question 11 to 20 carry three marks each.

11.Prove that $\sqrt{3}$ is an irrational Number.
12. Find the zeroes of quadratic polynomial $x^{2}-2 x-8$ and verify the relationship between the zeroes and their co-efficient.
13. For what value of k will the following system of linear equations has no solution?

$$
\begin{aligned}
& 3 \mathrm{X}+\mathrm{y}=1 \\
& (2 \mathrm{k}-1) \mathrm{X}+(\mathrm{k}-1) \mathrm{y}=2 \mathrm{k}+1
\end{aligned}
$$

14. Evaluate: $\left(\operatorname{Sin} 47^{\circ} / \operatorname{Cos} 43^{0}\right)^{2}+\left(\operatorname{Cos} 43^{\circ} / \operatorname{Sin} 47^{0}\right)^{2}-4 \operatorname{Cos}^{2} 45^{0}$
15. A fraction becomes $1 / 3$ when 1 is subtracted from the numerator and it becomes $1 / 4$ when 8 is added to its denominator. Find the fraction.
16. In fig $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$ are two right triangles right angled at B and M respectively Prove that
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$
17. Prove that

$\sqrt{\frac{1+\operatorname{Sin} A}{1-\operatorname{Sin} A}}=\operatorname{Sec} \mathrm{A}+\tan \mathrm{A}$
18. The distribution below gives the weights of 30 students of a class. Find the median weight of the students
\square

Weight in Kg	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
No. of students	2	3	8	6	6	3	2

19.In fig if $\mathrm{AD} \perp \mathrm{BC}$ prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$

20. If the mean of the following distribution is 54.Find the value of p :

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
frequency	7	p	10	9	13

Section D

(Q. No. 21 to Q. No. 31 carry 4 marks each)
21. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{5} / 3$ and $-\sqrt{5} / 3$
22. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
23. Draw the graphs of $2 x+y=6$ and $2 x-y=2$. Shade the region bounded by these lines and $x-$ axis. Find the area of the shaded region.
24. Prove that
$\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$
25.The following distribution gives the daily income of 50 workers of a factory

Daily in come	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	12	14	8	6	10

CbSe	
Gguess	CBSEGuess.com

Convert the distribution above to a less than type cumulative frequency distribution and draw itsOgive.
26. Without using trigonometric tables evaluate

$$
\left(\frac{3 \cos 43^{\circ}}{\sin 47^{\circ}}\right)^{2} \frac{\cos 37^{\circ} \operatorname{cosec} 53^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}
$$

27. In a school students thought of planting trees in and around the school campus to reduce air ands noise pollution. They planted two types of trees type A \& type B. The total number of trees planted are 25 and sum of type A and twice the number of type B trees is 40 . Find the number of each type of trees planted. What values can be imparted by planting trees.
28. Prove that
$(\operatorname{Sin} \varnothing+\operatorname{Cosec} \varnothing)^{2}+(\operatorname{Cos} \varnothing+\operatorname{Sec} Ø)^{2}=7+\operatorname{Tan}^{2} Ø+\operatorname{Cot}^{2} \varnothing$
29. In fig $\Delta \mathrm{ABC}$ and $\Delta \mathrm{DBC}$ are two triangles on the same base BC . If AD intersects BC at O . Show that $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DBC})=\mathrm{AO} / \mathrm{DO}$

30. The mean of the following frequency table is 50 . Find the missing frequencies

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	Total
Frequency	17	f_{1}	32	f_{2}	19	120

31. Prove that the square of any positive integer is of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .

| close Sguess $^{\text {CBSEGuess.com }}$ |
| :--- | :---: |

Model Paper - 2 (2016-17)

SUMMATIVE ASSESSMENT - 1
CLASS X

MATHEMATICS

Marking Scheme

SECTION- A

Ques. 1 LCM x HCF= Product of two numbers
$\Rightarrow L C M \times 15=120 \times 25$
$\Rightarrow L C M=\frac{120 \times 225}{15}=1800$
Ques2.q must be of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$
Ques. 3
Here, $A B^{2}=(24)^{2}=576, B C^{2}=(10)^{2}=100$
and $A C^{2}=(26)^{2}=676$
So $A C^{2}=A B^{2}+B C^{2}$
Hence, the given $\triangle A B C$ is a righttriangle.
Ques4Mode=3 Median-2 Mean

SECTION- B

Ques. 5

$$
\begin{array}{cc}
867=255 \times 3+102 & \text { [By using Euclid division lemma] } \\
225=102 \times 2+51 & \text { (1 marks) } \\
102=51 \times 2+0 & \text { (1 marks) }
\end{array}
$$

Therefore HCF of 867 and 255 is 51
Ques. 6

$$
4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}
$$

Product $=4 \sqrt{3} \times 2 \sqrt{3}=24$ (1 marks)
Sum $=5$
We have $\mathrm{F}(\mathrm{x})=4 \sqrt{3} \mathrm{x}^{2}+8 \mathrm{x}-3 \mathrm{x}-2 \sqrt{3}$
$\mathrm{F}(\mathrm{x})=4 x(\sqrt{3 x}+2)-\sqrt{3}(\sqrt{3} x+2)$

$$
F(x)=(\sqrt{3 x}+2)(4 x-\sqrt{3})
$$

Zeroes of $\mathrm{f}[\mathrm{x}]$ is given by
If $\mathrm{F}(\mathrm{x})=0$

$$
(\sqrt{3 x}+2)(4 x-\sqrt{3})=0
$$

$(\sqrt{3 x}+2)=0$ and $4 x-\sqrt{3}=0$
(1marks)

$$
x=\frac{-2}{\sqrt{3}} \quad x=\frac{-\sqrt{3}}{4}
$$

Clguess	Hence Zeroes of $\mathrm{f}(\mathrm{x})$ is α	$=\frac{-2}{\sqrt{3}} \quad$ and $\quad \beta=\frac{\sqrt{3}}{4}$
CBSEGuess.com		

Ques.7Since PQ || BC
Therefore By using BasicProportionality Theorem
$\frac{A P}{P B}=\frac{A Q}{Q C}$
(1marks)
$\frac{1.5}{3}=\frac{1.3}{Q C}$
(1marks)
$\mathrm{QC}=2.6 \mathrm{~cm}$.
Ques. $8 \sec 4 A=\operatorname{cosec}\left(\mathrm{A}-20^{\circ}\right)$
$\sec 4 A=\sec \left[90^{0}-\left(\mathrm{A}-20^{\circ}\right)\right]$
(1marks)

$$
\sec 4 A=\sec \left(110^{0}-\mathrm{A}\right)
$$

$$
\begin{aligned}
& 4 \mathrm{~A}=110^{0}-\mathrm{A} \\
& \mathrm{~A}= \frac{110}{5} \\
& \mathrm{~A}=22^{0}
\end{aligned}
$$

Ques. $9 \sin \theta \times \frac{1}{\sin \theta}-\sin \theta \times \frac{1}{\operatorname{cosec} \theta}$
$=1-\sin \theta \times \sin \theta=1-\sin ^{2} \theta=\operatorname{Cos}^{2} \theta$

Ques. 10
First five odd multiple of 5 are

$$
\begin{array}{cc}
5,15,25,35,45 & \text { (1 marks) } \\
\text { Mean }=\frac{5+15+25+35+45}{5} \\
& =\frac{125}{5} \\
=25
\end{array}
$$

Section- C
Ques. 11
Let $\sqrt{3}$ beaRational no.

$$
\begin{align*}
& \Rightarrow 3 \text { divides } \mathrm{p}^{2} \Rightarrow 3 \text { divides } \mathrm{p} \ldots \ldots 1 \text {) } \\
& \text { putting } \mathrm{p}=3 \mathrm{r} \quad \text { [from some integer] } \\
& \Rightarrow 3 q^{2}=(3 r)^{2}=9 r^{2} \tag{1marks}\\
& \Rightarrow q^{2}=3 r^{2} \\
& 3 \text { divides } \mathrm{q}^{2} \Rightarrow 3 \text { divides } \mathrm{q} \quad \ldots . . \text { (2) (1marks) }
\end{align*}
$$

From eqn. $1 \& 2,3$ is a common factor of $p \& q$ which contradicts the fact that $p \& q$ are coprime. So our assumption is wrong
$\therefore \sqrt{3}$ is an irrational no.
Ques. 12

$$
\begin{align*}
& \text { We have } \begin{aligned}
f(x) & =x^{2}-2 x-8 \\
= & x^{2}-4 x+2 x-8 \\
= & x(x-4)+2(x-4) \\
& =(x-4)(x+2)
\end{aligned}
\end{align*}
$$

Zeroes of $f(x) \operatorname{isf}(x)=0$

$$
(x+2)=0 \text { and } \quad(x-4)=0
$$

$x+2=0 \quad$ and $\quad x-4=0$
$x=-2$ and $x=4$
Therefore Zeroes of $\mathrm{f}(\mathrm{x})$ is $\quad \alpha=-2, \beta=4$

$$
\text { Sum of zeroes }=\alpha+\beta=-2+4=2
$$

(1/2marks)

$$
\text { And } \frac{\text { cofficientofx }}{\text { cofficientof } x 2}=\frac{-(-2)}{1}=2
$$

$$
\begin{equation*}
\text { Product of zeroes }=\alpha \beta=(-2) 4=-8 \tag{1/2marks}
\end{equation*}
$$

$$
\text { And } \frac{\text { constant term }}{\text { cofficientofx } 2}=\frac{-8}{1}=-8
$$

Ques. $13 \quad$ Here $\quad a_{1}=3 b_{1}=1 \quad c_{1}=1$

$$
\mathrm{a}_{2}=(2 \mathrm{k}-1) \quad \mathrm{b}_{2}=(\mathrm{k}-1) \quad \mathrm{c}_{2}=(2 \mathrm{k}+1)(1 / 2 \text { marks })
$$

Close	
gquess	CBSEGuess.com

For no solution

$$
\begin{gather*}
\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2} \tag{1/2marks}\\
\frac{3}{2 k-1}=\frac{1}{k-1} \neq \frac{1}{2 k+1} \tag{1/2marks}\\
\frac{3}{2 k-1}=\frac{1}{k-1} \& \frac{1}{k-1} \neq \frac{1}{2 k+1} \\
3 \mathrm{k}-3=2 \mathrm{k}-1 \quad, \quad 2 \mathrm{k}+1 \neq \mathrm{k}-1 \tag{1/2marks}\\
3 \mathrm{k}-2 \mathrm{k}=-1+3, \quad 2 \mathrm{k}-\mathrm{k} \neq-1-1 \\
\mathrm{~K}=2, \quad \mathrm{k} \neq 2
\end{gather*}
$$

Hence the given system of equations will have no solution if $\mathrm{k}=2$.(1marks)
Ques. 14

$$
\begin{gather*}
\left\{\frac{\sin 47}{\cos (90-47)}\right\}^{2}+\left\{\frac{\sin (90-47)}{\sin 47}\right\}^{2}-4 \times\left(\frac{1}{\sqrt{2}}\right)^{2} \tag{1marks}\\
=\left\{\frac{\sin 47}{\sin 47}\right\}^{2}+\left\{\frac{\sin 47}{\sin 47}\right\}^{2}-4\left(\frac{1}{\sqrt{2}}\right)^{2} \\
=1+1-4 \times \frac{1}{2} \\
=2-2 \\
=0
\end{gather*}
$$

Ques. 15 Let the numerator be x and denominator be y , Fraction $=\frac{x}{y}$
According to given condition

$$
\begin{align*}
& \frac{x-1}{y}=\frac{1}{3} \text { And } \frac{x}{y+8}=\frac{1}{4} \\
& \frac{x-1}{y}=\frac{1}{3} \\
& 3 \mathrm{x}-3=y \\
& 3 \mathrm{x}-\mathrm{y}=3- \tag{1}
\end{align*}
$$

(1marks)
\square

$$
4 x-y=8 \quad-(2) \quad(1 \text { marks })
$$

Subtracting eqn. (1)from eqn. (2)

$$
\begin{gathered}
4 x-y=8 \\
3 x-y=3 \\
x=5
\end{gathered}
$$

On putting the value of x in equation (1)
$3 \times 5-y=3$
$15-y=3$

$$
y=12
$$

Therefore fraction is $=\frac{5}{12}$
Ques. 16
(1) In triangle ABC and AMP we have
$\angle A B C=\angle A M P=90^{\circ}$ (each)
$\angle A=\angle A$ (common)
(1marks)
Therefore AA Criterion of similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(2) $\triangle A B C \sim \triangle A M P$
(1marks)
$\Rightarrow \frac{C A}{A P}=\frac{B C}{M P} B y B P T$
$\Rightarrow \frac{C A}{P A}=\frac{B C}{M P}$
(1marks)

Ques. 17

$$
\begin{align*}
& \text { L.H.S }= \sqrt{\frac{1+\sin A}{1-\sin A}} \times \sqrt{\frac{1+\sin A}{1+\sin A}} \\
&= \sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}}=\frac{1+\sin A}{\operatorname{Cos} A}=\frac{1}{\operatorname{Cos} A}+\frac{\operatorname{Sin} A}{\operatorname{Cos} A} \tag{1marks}\\
&=\quad \sec A+\tan A=\text { R.H.S }(1 \mathrm{man}=\operatorname{marks} A+\tan A
\end{align*}
$$

CbSe	
Gguess	CBSEGuess.com

$40-45$	2	2
$45-50$	3	$3+2=5$
50-55	8	$5+8=13$
$55-60$	6	$13+6=19$
$60-65$	6	$19+6=25$
65-70	3	$25+3=28$
$70-75$	2	$28+2=30$
$\mathrm{N}=30$,	$\frac{N}{2}=15, \quad 1=30$,	$\mathrm{f}=3, \quad \mathrm{~h}=5$
Median $=$	$1+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$	
	$\begin{aligned} & =50+\frac{15-3}{8} \times 5 \\ & =50+\frac{15}{2}=\frac{115}{2} \end{aligned}$	$=50+\frac{12}{8} \times 5$

Ques. 19 In $\triangle A D C$ we have

$$
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \quad(\mathrm{By} \text { Pythagoras theorem })-(1)
$$

In $\triangle A D B w e h a v e$

$$
\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \quad(\text { By Pythagoras theorem })-(2)
$$

(2) - (1)

$$
\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}
$$

$\Rightarrow \mathrm{AB}^{2}-\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2} \quad$ Hence proved.

CbSe	
Gguess	CBSEGuess.com

Ques. 20
Class $\quad \operatorname{Mid} \operatorname{value}(\mathrm{xi}) \quad$ fi ui $=\frac{x i-a}{h} \quad$ fiui

$0-20$	10	7	-2	-14
$20-40$	30	p	-1	-p
$40-60$	50	10	0	0
$60-80$	70	09	1	9
$80-100$	90	13	2	26

(2marks)
$\overline{\Sigma f i}=39+p \quad \Sigma f i u i=21-p$
Mean $=\mathrm{a}+\mathrm{h}\left(\frac{\Sigma f i u i}{\Sigma f i}\right)$

$$
\begin{gathered}
54=50+20\left(\frac{21-p}{39+p}\right) \\
\mathrm{P}=11
\end{gathered}
$$

SECTION - D

Ques. $21 \quad$ Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}} \quad$ are two zeroes of $f(x)$
$\therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\mathrm{x}^{2}-\frac{5}{2}$ is a factor of
(2marks)
$\Rightarrow 3 \mathrm{x}^{2}-5$ is a factor of $\mathrm{p}(\mathrm{x})$

$$
3 x+6 x-2 x-10 x-5=\left(x+\sqrt{\frac{5}{3}}\right)\left(n-\sqrt{\frac{5}{3}}\right)(n+1)(n+1)
$$

\therefore zeroes of $p(x)$ are $\sqrt{ } \frac{5}{3},-\sqrt{\frac{5}{3}},-1,-1$
(2marks)

Ques22.Given two Triangles $\triangle A B C$ and $\triangle D E F$ such that $\triangle A B C$ is similar to $\triangle D E F$

Close	
To prove	

$$
\frac{\Delta A B C}{\triangle D E F}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}
$$

Construction :Draw $A L ; \perp B C$ and $D M \perp E F$

Proof Since, similar triangles are equiangular and their corres
$\triangle A B C$ is similar to $\triangle D E F$
$\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Thus, in $\triangle A L B$ and $\triangle D M E$

$$
\begin{array}{lr}
\angle A L B=\angle D M E & \left(\text { each } 90^{\circ}\right) \\
\angle B \quad=\angle E & \text { (from eq.(1) }
\end{array}
$$

By AA similarity, \triangle ALB is similar $\triangle \mathrm{DME}$

$$
\begin{equation*}
\frac{A L}{D M}=\frac{A B}{D E} \tag{2}
\end{equation*}
$$

From eq. (1) and (2), we get

$$
\begin{equation*}
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{A L}{D M} \tag{3}
\end{equation*}
$$

$\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=\frac{\frac{1}{2} \times B C \times A L}{\frac{1}{2} \times E F \times D M}$
(1marks)

$$
\frac{a r \triangle A B C}{a r \triangle D E F}=\frac{B C \times A L}{E F \times D M}
$$

As $\frac{B C}{E F}=\frac{A L}{D M}\{$ fromeqn.
$\frac{\operatorname{ar} \triangle A B C}{a r \triangle D E F}=\frac{B C^{2}}{E F^{2}}$
But $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
(by similarity of $\triangle A B C$ and $\triangle D E F$)
Therefore eq. (4) and (5), we get
$\frac{a r \triangle A B C}{\operatorname{ar} \triangle D E F}=\frac{B C^{2}}{E F^{2}}=\frac{A B^{2}}{D E^{2}}=\frac{A C^{2}}{D F^{2}}$

x	0	1	2
y	6	4	2

Ques. 23

$$
\begin{aligned}
& 2 x+y=6 \\
& Y=6-2 x
\end{aligned}
$$

$$
2 x-y=-2
$$

x	0	1	2
y	2	3	6

Ques. 24

$=\frac{(\tan \theta+\sec \theta)-(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1}=\frac{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1}(2$ mark $)$

$$
\begin{aligned}
& \tan \theta+\sec \theta=\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta} \\
= & =\frac{\sin \theta+1}{\cos \theta} \\
= & \text { R.H.S }
\end{aligned}
$$

Ques. 25

Marks	No .of Students	Marks less than	C.F
$100-120$	12	120	12
$120-140$	14	140	26
$140-160$	8	160	34
$160-180$	6	180	40
$180-200$	10	200	50

Cumulative frequency curve

Ques. 26

$$
\left(\frac{3 \cos 43^{\circ}}{\sin 47^{\circ}}\right)^{2}-\frac{\cos 37^{0} \operatorname{cosec} 53^{0}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}
$$

\square

$$
\begin{aligned}
& =\left(\frac{3 \cos \left(90-47^{\circ}\right)}{\sin 47^{\circ}}\right)^{2}-\frac{\cos \left(90^{\circ}-53^{\circ}\right) \operatorname{cosec} 53^{\circ}}{\tan \left(90^{\circ}-85^{\circ}\right) \tan 25^{\circ} \tan 45^{\circ} \tan \left(90^{\circ}-25^{\circ}\right) \tan 85^{\circ}} \\
& =\left(\frac{3 \cos \left(90-47^{0}\right.}{\sin 47^{\circ}}\right)^{2}-\frac{\cos \left(90^{\circ}-53^{\circ}\right) \operatorname{cosec} 53^{\circ}}{\tan \left(90^{\circ}-85^{\circ}\right) \tan 25^{\circ} \tan 45^{\circ} \tan \left(90^{\circ}-25^{\circ}\right) \tan 85^{\circ}} \\
& =\left(\frac{3 \cos \left(90-47^{0}\right.}{\sin 47^{\circ}}\right)^{2}-\frac{\sin 53^{0} \operatorname{cosec} 53^{0}}{\cot 85^{\circ} \tan 25^{\circ} \tan 45^{\circ} \cot 25^{\circ} \tan 85^{\circ}}
\end{aligned}
$$

$$
=\left(\frac{3 \sin 47^{0}}{\sin 47^{0}}\right)^{2}-\frac{\sin 53^{0} \frac{1}{\sin 53^{0}}}{\frac{1}{\tan 25^{0}} \tan 25^{\circ} \times 1 \times \frac{1}{\tan 25^{0}} \tan 85^{0}}
$$

$$
=(3 \times 1)^{2}-\frac{1}{1 \times 1 \times 1}
$$

$$
\left\{\because \tan 45^{\circ}=1\right\}
$$

$$
=9-1
$$

$$
=8
$$

Ques. 27
Let x, y be the number of type A and type B trees
According to the question
$x+y=25$.
$x+2 y=40$ (ii)
(1 mark)
Subtracting (ii) from (i)
$\mathrm{Y}=15$
(1 mark)
Putting this value of y in eqn. (i)
$\mathrm{X}=10$
No. of type A trees $=10$
No of type B trees $=15$

CBSEGuess.com

By involving students in such acts values like environmental consciousness and social responsibilities are infused among them.

Ques. 28
L.H.S

$$
=\sin ^{2} \phi+\operatorname{Cosec}^{2} \phi+2 \sin \phi \operatorname{Cosec} \phi+\operatorname{Cos}^{2} \phi+\operatorname{Sec}^{2} \phi+2 \operatorname{Cos} \phi \operatorname{Sec} \phi
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { As we knowthat } \\
\operatorname{Cosec}^{2} \phi=1+\cot ^{2} \phi \\
\text { (2 mark) }
\end{array} \\
& \qquad \operatorname{Sec}^{2} \phi=1+\tan ^{2} \phi \\
& \therefore 1+1+\operatorname{Cot}^{2} \phi+2+1+\tan ^{2} \phi+2=7+\tan ^{2} \phi+\operatorname{Cot}^{2} \phi \quad \text { (2 mark) } \\
& =\text { R.H.S }
\end{aligned}
$$

Ques. 29
Draw AL $\perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$
$\therefore \frac{A L}{D M}=\frac{A O}{D O} \quad$ (Corresponding sides are proportional)
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} X B C X A L}{\frac{1}{2} X B C X D M}$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A B C)}=\frac{A O}{D O}$
$\frac{A L}{D M}=\frac{A O}{D O}$
(1mark)
Ques. 30

Class	f_{i}	x_{i}	$\mathrm{u}_{\mathrm{i}}=\frac{x i-a}{h}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-20$	17	10	$\frac{10-50}{20}=-2$	-34
$20-40$	f_{1}	30	$\frac{30-50}{20}=-1$	$-\mathrm{f}_{1}$
$40-60$	32	50	0	0
$60-80$	f_{2}	70	$\frac{70-50}{20}=1$	f_{2}
$80-100$	19	90	$\frac{90-50}{20}=2$	38

chgergess	CBSEGuess.com

$\mathrm{f}_{1}+\mathrm{f}_{2}=52$

$$
\begin{gather*}
\text { Mean }=\mathrm{a}+\mathrm{h} \frac{\Sigma f i u i}{\Sigma f i} \tag{1}\\
50=50+20\left(\frac{4-f 1+f 2)}{120}\right. \\
\mathrm{f}_{1}-\mathrm{f}_{2}=4 \\
\mathrm{f}_{1}=28 \\
\mathrm{f}_{2}=24
\end{gather*}
$$

31.

Let x be any positive integer and $\mathrm{b}=3$.
According to Euclid's division lemma, we can say that $x=3 q+r, 0 \leq r<3$

Therefore, all possible values of \mathbf{x} are:

$$
x=3 q,(3 q+1) \text { or }(3 q+2)
$$

Now lets square each one of them one by one.
(i) $(3 q)^{2}=9 q^{2}$

Let $m=3 q^{2}$ be some integer, we get $9 q^{2}=3 \times 3 q^{2}=3 m$
(ii) $(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$

Let $m=3 q^{2}+2 q$ be some integer, we get
$(3 q+1)^{2}=3 m+1$

close Fguess	CBSEGuess.com

(iii) $(3 q+2)^{2}=9 q^{2}+4+12 q=9 q^{2}+12 q+3+1=3\left(3 q^{2}+4 q+1\right)+1$

Let $m=\left(3 q^{2}+4 q+1\right)$ be some integer, we get
$(3 q+2)^{2}=3 m+1$
Hence, square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .(1 mark)
Prepared By Group No.-1:

1. Mrs Kiran Wangnoo. Kv Bantalab (Group Leader)
2. Mr. B.B Rathore kv Hira Nagar
3. Mrs. Nidhi Gupta ,kv 1 Gandhinagar Jammu
4.Ms. Chandni Sabharwal ,Kv Chenani
5.Mr. Vijay Kumar, k v Bhadarwah
